Recent Extensions of the Discontinuous Enrichment Method (DEM) to Advection-Dominated Fluid Mechanics Problems

Irina Kalashnikova*, Ph.D. Candidate Stanford University, Institute for Computational & Mathematical Engineering

Motivation

Advection velocity: $\mathbf{a} = (a_1, a_2)^T = |\mathbf{a}|(\cos \phi, \sin \phi)^T$

 $\phi = \text{advection direction}.$

- - $\kappa \equiv 1 = \text{diffusivity}.$

- Describes many transport phenomena in fluid mechanics.
- Usual scalar model for the more challenging Navier-Stokes equations.
- Global Péclet number ($L = \text{length scale associated with } \Omega$):

scillations (Fig. 1)	0 0 02 04 06
	Figure 1: Spurious oscillations in the Galerkin Q_1 solution at high Pe number

Some Classi	cal Remedies
Stabilized FEMs (SUPG, GLS, USFEM)	RFB, VMS, PUM
Add a weighted residual	Construct conforming
(numerical diffusion) to	spaces that incorporate
variational equation to	knowledge of local
damp out oscillations.	behavior of the solution.

Discontinuous Enrichment Method

First proposed and developed by Farhat et. al. in [1] for the solution of the Helmholtz equation.

Idea of DEM

"Enrich" the usual Galerkin polynomial field \mathcal{V}^P by the free-space solutions to the governing constant-coefficient homogeneous PDE.

- Relation to multi-scale methods: splitting of solution into coarse (polynomial) and fine (enrichment) scales.
- Unlike PUM, VMS & RFB: enrichment field in DEM is not required to vanish at element boundaries.
- Continuity across element boundaries is enforced weakly using Lagrange multipliers $\lambda^h \in \mathcal{W}^h$.

Two Variants of DEM: True DEM vs. Pure DGM

Primal unknown $u^h \in \mathcal{V}^h$ has one of the two forms:

Enrichment-only "pure DGM" Contribution of the standard polynomial field is dropped from the approximation entirely

Genuine or "full" DEM: Splitting of the approximation into coarse (polynomial) and fine (enrichment) scales

Implementation

Element matrix problem (uncondensed):

$$\left(\begin{array}{ccc} \textbf{k}^{\mathrm{PP}} & \textbf{k}^{\mathrm{PE}} & \textbf{k}^{\mathrm{PC}} \\ \textbf{k}^{\mathrm{EP}} & \textbf{k}^{\mathrm{EE}} & \textbf{k}^{\mathrm{EC}} \\ \textbf{k}^{\mathrm{CP}} & \textbf{k}^{\mathrm{CE}} & \textbf{0} \end{array} \right) \left(\begin{array}{c} \textbf{u}^{\mathrm{P}} \\ \textbf{u}^{\mathrm{E}} \\ \lambda \end{array} \right) = \left(\begin{array}{c} \textbf{r}^{\mathrm{P}} \\ \textbf{r}^{\mathrm{E}} \\ \textbf{r}^{\mathrm{C}} \end{array} \right)$$

Due to the discontinuous nature of \mathcal{V}^E , u^E can be eliminated at the element level by a static condensation.

■ Statically-condensed true DEM element system:

Statically-condensed pure DGM element system:

$$-\mathbf{k}^{\mathrm{CE}}(\mathbf{k}^{\mathrm{EE}})^{-1}\mathbf{k}^{\mathrm{EC}}\lambda = \mathbf{r}^{C} - \mathbf{k}^{\mathrm{CE}}(\mathbf{k}^{\mathrm{EE}})^{-1}\mathbf{r}^{\mathrm{E}}.$$

*Joint work with Dr. Charbel Farhat and Dr. Radek Tezaur.

Hybrid Variational Formulation of DEM for Advection-Diffusion

■ Weak hybrid variational form:

Find $(u, \lambda) \in \mathcal{V} \times \mathcal{W}$ such that $a(v,u) + b(\lambda,v) = r(v), \quad \forall v \in \mathcal{V}$ $= -r_d(\mu) \quad \forall \mu \in \mathcal{W}$ Notation: $\tilde{\Omega} = \cup_{e=1}^{n_{el}} \Omega^e$ $\tilde{\Gamma} = \cup_{e=1}^{n_{el}} \Gamma^e$ $\mathsf{\Gamma}^{e,e'} = \mathsf{\Gamma}^e \cap \mathsf{\Gamma}^{e'}$

 $\mathcal{V} \equiv \left\{ v \in L^2(\tilde{\Omega}) : v|_{\Omega^e} \in H^1(\Omega^e) \right\}, \qquad \mathcal{W} = \Pi_e \Pi_{e' < e} H^{-1/2}(\Gamma^{e,e'}) \times H^{-1/2}(\Gamma)$ $a(v, u) = (\nabla v + va, \nabla u)_{\tilde{\Omega}}, \quad r(v) = (f, v)$

 $b(\lambda, v) = \sum_{i} \int_{\Gamma_{e,e'}} \lambda(v_{e'} - v_e) d\Gamma + \int_{\Gamma} \lambda v \ d\Gamma, \quad r_d(\mu) = \int_{\Gamma} \mu g d\Gamma$

■ Space of Lagrange Multiplier Approximations \mathcal{W}^h :

$$\begin{array}{ll} a(u,v) &= \int_{\tilde{\Omega}} (\mathbf{a} \cdot \nabla u - \Delta u) v d\Omega + \int_{\Gamma} \nabla u \cdot \mathbf{n} v d\Gamma \\ &+ \sum_{e} \sum_{e'} \int_{\Gamma^{e,e'}} (\nabla u_e \cdot \mathbf{n}_e v_e + \nabla u_{e'} \cdot \mathbf{n}_{e'} v_{e'}) d\Gamma \end{array}$$

Suggests approximating:

$$\lambda^h \approx \nabla u_e^E \cdot \mathbf{n}^e = -\nabla u_{e'}^E \cdot \mathbf{n}^{e'} \quad \text{ on } \Gamma^{e,e'}$$
and
$$\lambda^h \approx -\nabla u^E \cdot \mathbf{n} \quad \text{ on } \Gamma$$

if a Dirichlet boundary condition is to be enforced on Γ

Approximation Spaces for 2D Advection-Diffusion

Exponential Enrichment Functions

■ Derived by solving $\mathcal{L}u^E = \mathbf{a} \cdot \nabla u^E - \Delta u^E = 0$ analytically.

$u^{E}(\mathbf{x};\theta_{i}) = e^{\frac{Pe}{2}(\cos\phi + \cos\theta_{i})(x - x_{r,i})} e^{\frac{Pe}{2}(\sin\phi + \sin\theta_{i})(y - y_{r,i})}$

Enrichment functions for 2D advection-diffusion:

 $\Theta^u \equiv \{\theta_i\}_{i=1}^{n^E} \in [0, 2\pi) = \text{ set of angles specifying } \mathcal{V}^E$

 $(x_{r,i}, y_{r,i}) = \text{ reference point for } u_i^E$

Figure 3: Plots of enrichment function $u^{E}(\mathbf{x}; \theta_{i})$ for several values of θ_{i} ($\phi = 0$)

Exponential Lagrange Multipliers on a Straight Edge

Lagrange Multiplier Approximations: $\lambda^h \approx \nabla u^E \cdot \mathbf{n}|_{\Gamma_{a,a'}}$ $\lambda^{h}(s)|_{\Gamma^{ij}} = \sum_{k=1}^{n} \lambda_{k} \exp\left\{\frac{|\mathbf{a}|}{2} \left[\cos(\phi - \alpha^{ij}) + \cos(\theta_{k} - \alpha^{ij})\right] (s - s_{r}^{ij})\right\},\,$

■ Discrete Babuška-Brezzi inf-sup condition: a.e. in the mesh

Lagrange multipliers per edge = $n^{\lambda} \leq \frac{n^{-1}}{2}$

■ Bound is a necessary, but in general not a sufficient condition for ensuring a non-singular global interface problem.

- \blacksquare The set Θ^u that defines the enrichment field typically leads to too many Lagrange multiplier dofs.
- $\Theta^{\lambda} = \{\theta_k^{\lambda}\}_{k=1}^{n^{\lambda}} = \text{set of angles that specifies the Lagrange multipliers } \not\subset \Theta^{u}$

DEM/DGM Element Design for 2D Advection-Diffusion

Lagrange Multiplier Selection & Truncation

Two Lagrange multipliers $\lambda^h(s; \theta_1^{\lambda})$ and $\lambda^h(s; \theta_2^{\lambda})$ given on a straight edge Γ^{ij} are redundant (that is, $\lambda^h(s;\theta_1^{\lambda}) = C\lambda^h(s;\theta_2^{\lambda})$ for some real constant C) if

$$\frac{\theta_1^{\lambda} - \theta_2^{\lambda}}{2} = n\pi, \quad \text{or} \quad \frac{\theta_1^{\lambda} + \theta_2^{\lambda}}{2} = \alpha^{ij} + n\pi,$$

for any $n \in \mathbb{Z}$, where α^{ij} is the angle at which Γ^{ij} is oriented.

EXECUTE: Key Observation: If Θ^{λ} as a set of angles that are clustered around α^{ij} :

$\Theta^{\lambda} = \alpha^{ij} + \{\beta_k^{\lambda}\}_{k=1}^{n^{\lambda}},$	$(a\lambda)n^{\lambda} - (aa)$
$\Theta' = \alpha^{3} + \{\beta_{k}\}_{k=1}^{3},$	$\{\beta_k^{\lambda}\}_{k=1}^{n^{\lambda}} \in [0, 2\pi)$

the necessary redundancy condition (Lemma 1) becomes mesh-independent:

$$\frac{\theta_k^{\lambda} + \theta_l^{\lambda}}{2} = \alpha^{ij} + n\pi \quad \Leftrightarrow \quad \frac{\beta_k^{\lambda} + \beta_l^{\lambda}}{2} = n\pi.$$

Mesh Independent Element Design Procedure

Enrichment Functions: $u^{E}(\mathbf{x};\theta_{i}) = e^{\frac{Pe}{2}(\cos\phi + \cos\theta_{i})(x-x_{r,i})}e^{\frac{Pe}{2}(\sin\phi + \sin\theta_{i})(y-y_{r,i})}$ Lagrange multipliers: $\lambda^h(s)|_{\Gamma^{ij}} = e^{\frac{|\mathbf{a}|}{2} \left[\cos(\phi - \alpha^{ij}) + \cos\beta_k^{\lambda}\right](s - s_{r,k})}$

Algorithm 1. DGM/DEM element design

Fix $n^E \in \mathbb{N}$ (the desired number of angles defining \mathcal{V}^E). Select a set of n^E distinct angles $\{\theta_k\}_{k=1}^{n^E}$ between $[0, 2\pi)$. Let $\Theta^u = \phi + \{\theta_i\}_{i=1}^{n^L}$. Let $n^{\lambda} = \lfloor \frac{n^{E}}{4} \rfloor$. Choose a set of n^{λ} distinct angles $\{\beta_k\}_{k=1}^{n^{\lambda}}$ between $[0,\pi)$. **for** each edge $\Gamma^{ij} \in \Gamma^{int}$ having slope α^{ij} Let $\Theta^{\lambda} = \alpha^{ij} + \{\beta_k\}_{k=1}^{n^{\lambda}}$ (the set of angles defining the Lagrange multiplier approximations on $\Gamma^{e,e'}$).

Some DGM/DEM Elements

DGM Element: $Q - n^E - n^\lambda$ DEM Element: $Q - n^E - n^{\lambda +} \equiv [Q - n^E - n^{\lambda}] \cup [Q_1]$

- 'Q': Quadrilateral
- n^E: Number of Enrichment Functions
- n^{λ} : Number of Lagrange Multipliers per Edge Q1: Galerkin Bilinear Quadrilateral Element

Figure 5: Illustration of the sets Θ^u and Θ^{λ} that define the Q-8-2 element

Table 1: Some DGM and DEM elements

: m = 0, ..., 3 $\alpha^{ij} + \{0, \frac{\pi}{2}\}$ Q-12-3 | 12 | $\phi + \{\frac{m\pi}{6} : m=0,...,11\}$ $\alpha^{ij} + \{\frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}\}$ $\alpha^{ij} + \{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}\}$ 16 $\phi + \{\frac{m\pi}{9} : m = 0, ..., 15\}$ $Q-5-1^+$ 5 $\phi + \{\frac{2m\pi}{5}: m=0,...,4\}$ $Q-9-2^+$ 9 $\phi + \{\frac{2m\pi}{9}: m=0,...,8\}$ $\alpha^{ij} + \{0, \frac{\pi}{2}\}$

Computational Complexity & Properties

Table 2: Computational complexity of some DGM, DEM, and standard Galerkin elements

Element	Asymptotic # of dofs	Stencil width for uniform $n \times n$ mesh
Q_1	n _{el}	9
Q_2	3n _{el}	21
Q_3	5 <i>n_{el}</i>	33
Q_4	7n _{el}	45
Q - 4 - 1	2n _{el}	7
Q - 8 - 2	4n _{el}	14
Q - 12 - 3	6n _{el}	21
Q - 16 - 4	8n _{el}	28
$Q - 5 - 1^+$	3n _{el}	21
$Q - 9 - 2^{+}$	5 n _{el}	33
$Q - 13 - 3^{+}$	7 n _{el}	45
$Q - 17 - 4^{+}$	9n _{el}	57

- \blacksquare Exponential enrichments \Rightarrow all integrations can be computed analytically.
- $\mathcal{L}u^{\mathcal{E}} = 0 \Rightarrow$ convert volume integrals to boundary integrals:

$a(v^{E}, u^{E}) = \int_{\mathbb{R}} (\nabla v^{E} \cdot \nabla u^{E} + \mathbf{a} \cdot \nabla u^{E} v^{E}) \, d\Omega = \int_{\mathbb{R}} \nabla u^{E} \cdot \mathbf{n} v^{E} d \, \Gamma.$

Numerical Results

Double Ramp Problem on an L-shaped Domain

Figure 6: L-shaped domain

- Homogeneous Dirichlet boundary conditions are prescribed on all six sides of L-shaped domain Ω
- Advection direction: $\phi = 0$
- Strong outflow boundary layer along the line x = 1
- Two crosswind boundary layers along
- y = 0 and y = 1
- A crosswind internal layer along y = 0.5

Figure 9: Solution to L-shaped double ramp problem along the line x = 0.9: $Pe = 10^3$, 1200 elts.

Figure 10: Solution to L-shaped double ramp problem along the line y = 0.25: $Pe = 10^3$, 1200 elts.

- Figure 11: Solution to L-shaped double ramp problem along the line y = 0.5: $Pe = 10^3$, 1200 elts.
- No oscillations can be seen in the computed DGM and DEM solutions.
- DEM elements outperform DGM elements in general for this problem. ■ Pure DGM elements experience some difficulty along the y = 0.5 line, the

location of the crosswind internal

 3.78×10^{-2} 1.33×10^{-2} 2.94×10^{-3} 3.70×10^{-3} 4.92×10^{-4} 2.12×10^{-4}

Table 3: $L^2(\Omega)$ errors relative to a reference solution*: L-shaped double ramp problem, $Pe=10^3$

layer. Since an analytical solution to this problem is not available, in computing the relative error, we use in place of the exact solution a reference solution, computed using a
Galerkin Q₆ polynomial element on a 43,200 = 3 · (120 × 120) element mesh.

Conclusions & Ongoing Work

- DGM/DEM Elements outperform their Galerkin and stabilized Galerkin counterparts of comparable complexity by at least one (and sometimes many) orders of magnitude difference. For $Pe = 10^3$, to achieve a 0.1% level of relative error:
 - \mathbb{Z} Q 8 2 and Q 9 2⁺ elements: reduce the dof requirement of the Q_2 element by a factor of ≈ 5 . Q - 12 - 3 and $Q - 13 - 3^+$ elements: reduce the dof requirement
- of the Q_3 element by a factor of ≈ 15 . = Q - 16 - 4 and $Q - 17 - 4^+$ elements: reduce the dof requirement
- of the Q_4 element by a factor of ≈ 15 . ■ In a high Péclet regime, DGM and DEM solutions are almost completely oscillation-free, in contrast with the Galerkin solutions.
- Results presented herein demonstrate the potential of DEM for realistic advection-dominated transport problems in fluid mechanics.
 - DEM for variable-coefficient problems. ■ Projection-method based DEM for incompressible, time dependent

References [1] C. Farhat, I. Harari, L.P. Franca, The Discontinuous Enrichment Method, Comput. Meth. Appl. Mech. Engng. 190 (2001) 6455–6479. [2] C. Farhat, I. Harari, U. Hetmaniuk, A Discontinuous Galerkin Method

Ongoing/future work:

Navier-Stokes.

[4] I. Harari, L.P. Franca, S.P. Oliveira, Streamline design of stability parameters for advection-diffusion problems, J. Comput. Phys. 171

5] I. Kalashnikova, C. Farhat, R. Tezaur. A Discontinuous Enrichment Mid-Frequency Regime, Comput. Meth. Appl. Mech. Engng. 192 Nethod for the Solution of Advection-Diffusion Problems in high Péclet Number Regimes. Fin. El. Anal. Des. 45 (2009) 238-250. [6] C. Farhat, I. Kalashnikova, R. Tezaur, A Higher-Order Discontinuous nrichment Method for the Solution of High Péclet Advection-Diffusion

[3] C. Farhat, R. Tezaur, P. Weidemann-Goiran, Higher-order extensions Problems on Unstructured Meshes, Int. J. Numer. Meth. Engng. problems. Int. J. Numer. Meth. Engng. 61 (2004) 1938-1956.